- DEWAR, R. B. K. (1970). Crystallographic Computing, herausgegeben von F. R. AHMED, S. R. HALL & C. P. HUBER, S. 63. Copenhagen: Munksgaard.
- DOWNIE, T. C., HARRISON, W., RAPER, E. S. & HEPWORTH, M. A. (1972). Acta Cryst. B28, 283–290.
- Eck, J. (1971). NAWAR, ein Programm zur Auswertung der Fünf-Wertmessung, unveröffentlicht. Univ. Hamburg.
- ECK, J., KATO, K. & RIECHERT, L. (1968). AST, ein Programm zur Erzeugung der Steuerlochstreifen, unveröffentlicht. Univ. Hamburg.
- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1971). Acta Cryst. A27, 368–376.

- HAMILTON, W. C. (1965). Acta Cryst. 18, 866–870.
 - HOLST, J. (1971). Dissertation, Univ. Hamburg.
- Норре, W. (1969). Acta Cryst. B25, 67-76.
- International Tables for X-ray Crystallography (1968). Bd. III, S. 202–203. Birmingham: Kynoch Press.
- JARCHOW, O. H. (1969). Acta Cryst. B25, 267-275.
- KITAIGORODSKY, A. I. (1961). Organic Chemical Crystallography. New York: Consultants Bureau.
- KOPF, J. (1973). Dissertation, Univ. Hamburg.
- MAYER, R. & ORGIS, J. (1964). Z. Chem. 4, 457.
- SEWEKOW, U. (1970). Diplomarbeit, Univ. Hamburg.
- SEWEKOW, U. (1972). Private Mitteilung.
- TAKANO, T., SASADA, Y. & KAKUDO, M. (1966). Acta Cryst. 21, 514–522.
- TRUTER, M. R. (1960). J. Chem. Soc. S. 997-1007.

Acta Cryst. (1977). B33, 1613–1615

Un Tripolyphosphate Acide de Fer FeH₂P₃O₁₀.H₂O

PAR M. T. AVERBUCH ET J. C. GUITEL

Laboratoire de Cristallographie, Centre National de la Recherche Scientifique, 166X, 38042 Grenoble Cédex, France

(Reçu le 3 janvier 1977, accepté le 14 janvier 1977)

Abstract. FeH₂P₃O₁₀.H₂O, monoclinic, C2/c, a = 12.076 (9), b = 8.443 (7), c = 9.352 (7) Å, $\beta = 112.10$ (1)°, Z = 4. The crystal structure has been solved with 1282 independent reflexions. The final R value is 0.043. The atomic arrangement is a three-dimensional framework built up from the tripoly-phosphate P₃O₁₀ anions linked by FeO₆ octahedra.

Introduction. La calcination, à 240 °C durant 24 h, d'un mélange constitué par 0,6 g de Fe_2O_3 et 6 ml d'acide monophosphorique permet l'obtention de cristaux rosés de $FeH_2P_3O_{10}$. H_2O . Les cristaux sont extraits du fondant par lavage à l'eau chaude. Signalons que, lors d'essais similaires de préparation, d'autres hydrates ont été obtenus: $FeH_2P_3O_{10}.4H_2O-FeH_2$ - $P_3O_{10}.1,5H_2O$ (Remy & Boullé, 1972) et FeH_2 - $P_3O_{10}.2H_2O$ (D'Yvoire, 1962). Ce dernier auteur a également synthétisé deux formes anhydres: FeH_2 - $P_3O_{10}(I)$ et $FeH_2P_3O_{10}(II)$.

L'étude d'un des cristaux du tripolyphosphate $FeH_2P_3O_{10}$. H_2O par la méthode de Weissenberg montre qu'il s'agit d'un composé monoclinique (groupe d'espace: C2/c ou Cc) dont la maille renferme quatre unités formulaires. Le Tableau 1 donne le dépouillement d'un diagramme de poudre de ce sel. Il est à noter que les dimensions de la maille obtenue après affinement par moindres carrés des données du diagramme Tableau 1. Dépouillement d'un diagramme de poudre FeH₂P₃O₁₀. H₂O, effectué à la longueur d'onde du cuivre sur diffractomètre Philips Norelco à la vitesse de $\frac{1}{8}^{\circ}(\theta) \min^{-1}$

Les intensités sont les hauteurs des pics au-dessus du fond continu.

h k l	d_{calc}	$d_{\rm obs}$	I_{obs}	h k l	d_{calc}	d_{obs}	$I_{\rm obs}$
110	6,73	6,74	25	400	2,792	2,792	13
11Î	6,02	6,02	100	130	2,728	2,728	2
200	5,58	5,59	26	313	2,713	2,714	8
111	4,81	4,81	4	13Ī	2,674	2,674	2
002	4,33	4,33	11	131	2,536	_	
2 O Ž	4,30	4,30	22	2 2 3	2,489	2,490	2
020	4,22		_	113	2,457	2,458	2
11Ž	4,09	4,09	34	42Ī	2,451	2,451	2
021	3,794	3,790	2	132	2,411		—
3 I Ī	3,627	3,626	3	222	2,405	—	_
22Ī	3,412)	2 4 1 2	22	4 2 Ž	2,389	2,389	4
310	3,406)	3,412	33	023	2,382		—
220	3,367	3,370	2	204	2,338		—
112	3,313	—		420	2,329		
312	3,286	3,287	31	312	2,315	—	
022	3,022	3,022	30	331	2,304)	2 304	1
222	3,011	3,011	45	551	2,302)	2,504	-
202	2,926	2,926	3	552	2,297	—	—
221	2,921	2,921	15	330	2,245		—
113	2,903	2 003	5	132	2,217	—	
4 O 2	2,899)	2,903	5	114	2,212	2 209	35
311	2.851	2,851	10	332	2,209)	2,207	55
				314	2 204	2 204	17

de poudre: a = 12,067 (9), b = 8,441 (5), c = 9,351 (6) Å, $\beta = 112,24$ (1)° diffèrent quelque peu de celles obtenues à partir des données provenant du diffractomètre automatique (voir *Abstract*).

Le cristal utilisé était un prisme de dimensions: 0,16 \times 0,11 \times 0,11 mm. 1282 réflexions indépendantes ont été mesurées à l'aide d'un diffractomètre automatique Philips PW 1100 en utilisant la longueur d'onde $K\beta$ du molybdène. Chaque réflexion était mesurée en balayage ω dans un domaine de 1,2° à la vitesse de 0,03° s⁻¹. Le fond continu était mesuré durant 5 s à chaque extrémité de ce domaine. Les mesures ont été effectuées de 3 à 20° (θ). En raison de la longueur d'onde utilisée et des dimensions suffisamment petites du cristal, aucune correction d'absorption n'a été effectuée.

La structure a été résolue par exploitation de la fonction de Patterson tridimensionnelle, qui a permis de localiser les atomes de fer et de phosphore. A ce stade, une synthèse de Fourier met en évidence la totalité de l'arrangement atomique à l'exception des atomes d'hydrogène.

Tableau 2. Paramètres des positions atomiques et $B_{\acute{e}q}$ dans FeH₂P₃O₁₀. H₂O

	<i>x</i> (σ)	$v(\sigma)$	z (σ)	$B_{\mathrm{\acute{e}q}}$
Fe	0,25	0,25	0,00	1,07
P(1)	0,2905 (1)	0,5667 (1)	0,2060 (1)	0,91
P(2)	0,50	0,3753 (2)	0,25	0,96
O(L)	0,4182 (3)	0,4875 (4)	0,3034 (4)	1,61
O(E11)	0,2120 (3)	0,4425 (4)	0,0973 (4)	1,33
O(E12)	0,3205 (3)	0,7042 (4)	0,1241 (4)	2,14
O(E13)	0,2411 (3)	0,6144 (4)	0,3240 (4)	1,69
O(E)	0,4265 (3)	0,2827 (4)	0,1103 (4)	1,30
O(W)	0,00	0,443 (1)	0,25	7,45

En dernier lieu, une synthèse de Fourier différence permet de vérifier la formule du composé.

Quelques cycles d'affinement, effectués avec 939

Tableau	3.	Longueurs	des	s axes	principaux	des
ellipsoïdes	de	e vibration	des	atomes	et orientation	par
rapport aux axes cristallographiques						

	U (Å)	$\theta(\circ)/a$	$\theta(\circ)/b$	$\theta(^{\circ})/c$
Fe	0,13	27	115	120
	0,12	69	28	114
	0.11	74	78	40
P(1)	0,12	33	60	121
	0,10	123	45	103
	0,09	94	60	34
P(2)	0,12	138	90	26
	0,11	90	0	90
	0,10	48	90	64
O(L)	0,18	129	132	53
	0,13	127	42	60
	0,11	61	87	51
O(E11)	0,16	128	125	43
	0,13	40	107	76
	0,10	100	40	51
O(E12)	0,21	39	122	127
	0,15	64	87	48
	0,11	63	32	115
O(E13)	0.17	82	27	117
	0,16	24	87	89
	0,11	112	63	27
O(E)	0,16	95	44	128
	0,12	114	53	38
	0,11	25	70	97
O(W)	0,45	116	90	4
	0.21	26	90	86
	0,20	90	0	90

Fig. 1. Projection de la structure sur le plan ac. Les molécules d'eau O(W) se projetant à l'aplomb des atomes de phosphore P(2) ne sont pas représentées.

Tableau4. Distances interatomiques (Å) dansl'environnement du fer

$2 \times \text{Fe} - O(E11)$	1,999 (4)
$2 \times \text{Fe} - O(E13)$	1,974 (4)
$2 \times \text{Fe} - O(E)$	2,007 (3)

données, pour lesquelles $|F_o| > 10$, amènent le facteur *R* à une valeur de 0,043.*

Le Tableau 2 donne les coordonnées cristallographiques et les facteurs thermiques isotropes. Le Tableau 3 rassemble les longueurs et directions des axes des ellipsoïdes de vibration thermique.

Discussion. La Fig. 1 représente la projection de la structure sur le plan *ac*.

Les atomes de fer occupent des sites octaédriques (Tableau 4) et assurent, dans les trois directions de l'espace, la cohésion entre les différents groupements P_3O_{10} .

Les distances et les angles de liaison (Tableau 5) trouvés ici pour les anions P_3O_{10} sont comparables à

Tableau 5.	Distances in	teratomiques	(Å) <i>et</i>	principaux
ang	les (°) de liai	son dans l'an	ion P ₃	D ₁₀

P(1)	O(E11)	O(E12)	O(E13)	O(<i>L</i>)
O(E11)	1,518 (3)	2,533 (5)	2,483 (5)	2,539 (4)
O(E12)	113,6 (2)	1,509 (4)	2,519 (6)	2,462 (5)
O(E13)	111,0 (2)	114,0 (2)	1,494 (4)	2,463 (5)
O(<i>L</i>)	108,4 (2)	104,2 (2)	104,9 (2)	_1,611 (3)
P(2)	O(E)	O(E')	O(L)	O(<i>L'</i>)
O(E)	1,495 (3)	2,548 (7)	2,530 (5)	2,454 (4)
O(E')	116,9 (2)	1,495 (3)	2,454 (4)	2,530 (5)
0(L)	110,7 (2)	105,9 (2)	1,580 (4)	2,528 (7)
O(L')	105,9 (2)	110,7 (2)	106,3 (2)	1,580 (4)

ceux rencontrés dans d'autres structures de tripolyphosphates.

La molécule d'eau O(W) ne possède que deux proches voisins qui sont les atomes d'oxygène O(E12), distants de O(W) de 2,87 Å.

Il faut signaler que les atomes d'oxygène O(E12) ne possèdent pas d'autres proches voisins cations hormis le phosphore.

Références

D'Yvoire, F. (1962). Bull. Soc. Chim. Fr. pp. 1224–1236. Remy, P. & Boullé, A. (1972). Bull. Soc. Chim. Fr. pp. 2213–2221.

Acta Cryst. (1977). B33, 1615-1617

1'-(3-Cyano-3,3-diphenylpropyl)(1,4'-bipiperidine)-4'-carboxamide Dihydrate : Piritramide

BY C. HUMBLET, G. EVRARD AND F. DURANT

Laboratoire de Cristallographie, Groupe de Chimie–Physique, Facultés Universitaires de Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium

(Received 24 December 1976; accepted 15 January 1977)

Abstract. $C_{27}H_{34}N_4O.2H_2O$, monoclinic, $P2_1/c$; a = 14.967(5), b = 12.967(5), c = 13.837(5) Å $\beta = 93.17(5)^\circ$; $D_m = 1.16$, $D_c = 1.15$ g cm⁻³, Z = 4. The molecular packing is essentially a result of hydrogen bonding.

Introduction. The present study was undertaken as part of an investigation of the structure–activity relationship in narcotic analgesics. The title compound, commercially known as Dipidolor[®], is a potent analgesic which shows anti-diarrhoeal properties.

Colourless prismatic crystals were obtained by evaporation of a solution in ethanol. The space group was determined from rotation and Weissenberg photographs. The cell dimensions and intensities were measured on a CAD-4 automatic diffractometer. The experimental conditions are given in Table 1.

The structure was solved with *MULTAN* (Germain, Main & Woolfson, 1971). The fifth set obtained from the tangent formula contained the whole structure. Full-matrix least-squares refinement was performed with the X-RAY 72 system (Stewart, Kruger, Ammon,

^{*} Les listes des facteurs de structure et des facteurs d'agitation thermique anisotrope ont été déposées au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 32455: 9 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, Angleterre.